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Abstract. The numbers and mean square lengths of short, neighbour-avoiding walks on 
the tetrahedral and body-centred cubic lattices have been determined exactly. Using 
standard extrapolation techniques, estimates have been made of the connective constants 
and mean squdre length exponents for these walks. Our estimate of the mean square length 
exponent is 1.22. but a value of 1.20 also appears plausible. 

1. Introduction 

Self-avoiding walks have been extensively studied as models of polymers with excluded 
volume and because of their importance in certain problems in the area of critical 
phenomena. Much of our current knowledge comes from exact enumeration and 
Monte Carlo studies, and one of the most important results which has emerged from 
this work is that certain exponents which characterize self-avoiding walks have values 
independent of which lattice is being studied and which depend only on the dimension- 
ality. 

Let the number of distinct self-avoiding n-step walks, weakly embeddable in a 
particular lattice, be C: and let the mean square end-to-end length of the walks be 
(R,Z)o. Numerical evidence suggests that, for sufficiently large n, 

C,O - n'O& (1) 

(R,2)o - nyO (2) 

and 

where po is a constant characteristic of the lattice in question, and ao, y o  are constants 
which appear to depend only on dimensionality. In three dimensions, evidence from 
exact enumeration strongly supports a. = and yo  = 8 (Domb 1963, Martin et a1 1967, 
Wall and Hioe 1970); these results are consistent with Monte Carlo estimates (Gans 
1965). 

An important question remains: to what extent do the exponents depend on the 
range of the excluded volume potential? An obvious extension of self-avoiding walks is 
to self-avoiding walks with near neighbours excluded (or first-neighbour-avoiding walks) 
in which the walk cannot revisit a point already occupied, nor can it visit a point which is 
a first neighbour of a point already occupied. We will adopt symbols C, and ( R i )  
for the number and mean square length of such walks. Hammersley's proof of the 
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existence of the connective constant for self-avoiding walks goes over trivially to first- 
neighbour-avoiding walks so that 

lim n- ' lnC, = inf n-'InC, -- k = l np  
n- m n > O  

(3) 

and since C, < C: it follows that p < po. 
The value of the mean square length exponent, y, has been investigated by Monte 

Carlo and exact enumeration methods but there is disagreement amongst different 
workers. Mark and Windwer (1967) have carried out a Monte Carlo study on walks of 
up to about 200 steps on the tetrahedral lattice with the conclusion that 1' cv 1.255. 
Kumbar and Windwer (1971) enumerated neighbour-avoiding walks with up to 15 steps 
on the tetrahedral lattice and on the four-choice cubic lattice and estimated a value of y 
between 1-25 and 1.26 for both lattices. Hioe (1967) investigated the square, triangular, 
simple cubic and face-centred cubic lattices using exact enumeration, with the conclusion 
that y = 1.20 in three dimensions and 1.5@ in two dimensions. 

The only rigorous result on this question appears to be a proof by Watson (1970) 
that the bond-site transformation is a bijection from the class of n-step self-avoiding 
walks on a lattice to the class of (n - 1)-step neighbour-avoiding walks on the covering 
lattice. From this it also follows that the mean square length exponent for self-avoiding 
walks on a lattice L is equal to the mean square length exponent for neighbour-avoiding 
walks on the covering lattice L', ie go(L) = y(L'). Watson points out that, since there is 
good numerical evidence that y o  depends only on the dimensionality of the lattice, it is 
likely that y is equal to yo  for all lattices of a given dimension. 

Although this argument is persuasive, it should be treated with some caution since 
the final step relies on the conjecture that y o  depends only on dimensionality. In two 
dimensions it is well established that y o  is equa! to 1.50 for the square, hexagonal and 
triangular lattices, but it is worth noting that, although the covering lattice of the 
hexagonal lattice (ie the Kagome lattice) has received some numerical attention, the 
covering lattices of the square and triangular lattices are not planar, and the exponents 
on such lattices have not been investigated (of course, Watson's work indicates that 
y = 1.50 for these lattices but, unfortunately, it is not certain that yo = 1.50). 

In the same way, although Watson's work throws doubt on the results of Kumbar 
and Windwer, it does not disprove them. These disagreements have led us to extend the 
enumerations on the tetrahedral lattice by a further four terms and to enumerate the 
walks up to 12 steps on the body-centred cubic (BCC) lattice. 

2. Exact enumerations 

The method which we have adopted for enumeration of short walks is somewhat 
different from the methods which have been used previously (Martin 1962, Hioe 1970, 
Chay 1971, 1972) and is closely related to the dimerization approach used by Suzuki 
(1968) and by Alexandrowicz (1969), in Monte Carlo studies of self-avoiding walks. 

In order to enumerate all first-neighbour-avoiding walks of (m + n) steps we first 
enumerate all first-neighbour-avoiding walks of m steps and of n steps using standard 
methods (Martin 1962). Let these sets of walks be S, and S, and let each walk start 
from the same origin. For each walk W, E S, and W, E S, we superimpose W, and W, 
and reverse each step in W,. The resulting directed graph is an (n+m)-step walk and 
the set of such graphs will include all (m+ n)-step first-neighbour-avoiding walks. 
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To determine which of these walks are first-neighbour-avoiding we begin by construct- 
ing 9,, the set of N ,  lattice sites that are excluded by (ie that are visited by, or are near 
neighbours of sites visited by) at least one member of S,. Each W, can then be repre- 
sented by a sequence of N ,  bits in which each bit is associated with one site in 9, and 
only those bits corresponding to sites excluded by that particular walk are nonzero. 
For each W, a similar sequence of N ,  bits is used to represent those lattice sites in 9, 
visited by that particular walk. The superposition of any W, and W, will then result in 
a first-neighbour-avoiding walk if the intersection of the corresponding bit patterns is 
zero (ie if no 'ones' are common to the two bit patterns). For the lattices and walk sizes 
considered here, the bit representation is not unwieldy ; for the tetrahedral lattice 
N ,  < 350. The enumeration of 19-step walks on the tetrahedral lattice required less 
than nine minutes on an IBM 370/165 ; before multiplication by the customary symmetry 
factors, this represents a counting rate of over three million successes per minute. 

The numbers of walks and their mean square end-to-end lengths are given in tables 1 
and 2. 

3. Analysis of results 

We have analysed the exact enumeration data using standard ratio methods. Assuming 
that 

Cn 5 nap'' (4) 

Table 1. Numbers (C,) and mean square lengths ( ( R i ) )  of neighbour-avoiding walks on the 
tetrahedral lattice. 

n C" (R.2) 

1 4 3 
2 12 8 
3 36 13.6666 
4 108 19,5555 
5 300 27.3200 
6 852 35.04225 
7 2364 43.85279 
8 6636 52,51356 
9 18492 61.77742 

10 51660 71,05970 
1 i  143508 80.90083 
12 399492 90.71281 
13 1107324 101.03925 
14 3074940 1 1  1.30195 
15 8510868 122.03 163 
16 23591796 132.68004 
17 65229852 143.75115 
18 180566076 154.74085 
19 498813708 166.12 132 
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Tabie 2. Numbers (CJ and mean square lengths ( ( R i ) )  of neighbour-avoiding walks on the 
BCC lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 

8 
56 

296 
1640 
8984 

49256 
266600 

1448072 
7820984 

42316952 
227940584 

1229803016 

3 
6.85714 

13.37838 
20.25365 
27.98308 
36.01753 
44.83525 
53.76872 
63.22801 
72.74976 
82.75354 
92.75876 

so that we can form a sequence of estimates pn = C,, JC, of p. Because of the odd-even 
alternation on these lattices, it is more convenient to notice that 

and to form the sequence of estimates 

The behaviour of pn and pz as a function of n is shown in figure 1 for the tetrahedral 
lattice and in figure 2 for the BCC lattice. 

For the tetrahedral lattice we estimate 

in good agreement with the results of Kumbar and Windwer (1971), who suggested 
p = 2.74. For the BCC lattice the behaviour of pn and pz is shown in figure 2. We 
estimate 

pBcc = 5*33+0*01. (9) 

2 . 7 9 9 4  

2.75 

t 
1 
1 1 

I I I I I I 1 1 1 
0.04 0.08 2.73: I 

n-' 
Fm 1. Extrapolations against n-' of pcn = Cs+l/Cn and p i  = (Cn+2/Cm)1'z for the 
tetrahedral lattice. 
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F 5.36 

t 
I I 1 1  

0.10 0 .20  
'1 
0 

5.32 

n-' 
Figure 2. Extrapolations against n-' of pn = C,, ,/C, and p; = (Cn+z/Cn)l 'z for the BCC 
lattice. 

In attempting to estimate the value of the mean square length exponent, y, we have 
removed much of the odd-even alternation by forming the series of linear extrapolants 

r,' = M((R,2+2>/(R,Z>)- 11. (10) 

The n dependence of y,' is shown in figure 3 for both the tetrahedral and BCC lattices. 
For the tetrahedral lattice, including the four extra terms over those derived by Kumbar 
and Windwer (1971) indicates a considerable amount of curvature in the data and it is 
clear that their estimate of y = 1.25 is much too high. The curvature makes the data 
difficult to extrapolate with confidence but an estimate based on the last four points for 
the tetrahedral lattice would suggest a value of y between 1.22 and 1.23. However, 

L 

i 1.36 

i 

1 
i 
1 
1 

k2O0 1 0.08 0.15 

n - I  

Figure 3. Extrapolations of y: = ~ n [ ( ( R ~ + z ) / ( R ~ ) ) - l ]  for the tetrahedral (full line) and 
BCC (broken line) lattices. 



Neighbour-avoiding walks 1183 

since some curvature is still present at these values of n it is likely that this value would 
be too high, and our final, somewhat subjective, estimate is 

y = 1.22:;::: 

for both lattices. 

4. Discussion 

When the data discussed here are compared with data for self-avoiding walks, the most 
noticeable feature is that convergence, for data on neighbour-avoiding walks, is very 
slow, as suggested by Mazur and Joseph (1963). 

Since both lattices are loose-packed one would expect (Sykes et a1 1972) that the 
generating function of mean square lengths would have a singularity where the circle of 
convergence cuts the negative real axis, in addition to the singularity on the positive 
real axis. On the suggestion of a referee we attempted to make use of this to improve 
the convergence. Following Watts (1974) we used a conformal transformation which 
maps the unit circle centred at the origin into a circle centred at (1 - 5)/2 with radius 
(1 + 5)/2,5 > 1. This leaves the dominant singularity unchanged but moves the second 
singularity away from the circle of convergence. The effect of this transformation is to 
remove the odd-even alternation but, unfortunately, it does little to improve the con- 
vergence of the y: series. 

Our estimates of y are considerably lower than those of Windwer and co-workers 
for the tetrahedral lattice. Our best estimate of y is above the estimate for self-avoiding 
walks (1.20) but this value lies within our estimated error bounds. Our disagreement 
with Kumbar and Windwer (1971) simply stems from our use of four more terms in the 
mean square length sequence. Including these extra terms shows that some downward 
curvature appears in the sequence of 7,' values. It is more difficult to reconcile our 
estimates with the Monte Carlo results of Mark and Windwer (1967). They consider 
walks with up to 208 steps which our data would indicate to be sufficiently long to 
yield good estimates of y. Unfortunately they do not give any indication of the standard 
deviations or sample sizes for their Monte Carlo work. Their data (figure 2 of their 
paper) in the range n = 50-120 would indicate a value of y less than 1.25 and it may be 
that their data for longer walks suffer from relatively large sampling errors. 
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